Limber LIMS

Using laboratory information management systems (LIMS) to automate and streamline laboratory tasks: three case studies


With today’s high-throughput technologies and state-of-the-art tools, laboratories around the world are generating mountains of data at unprecedented rates. The traditional approaches to data management—notes jotted in lab notebooks, multiple spreadsheet files tucked away in computer folders, and images of gels and computer printouts stashed in 3-ring binders—no longer suffice. As a result, many researchers are turning to computerized laboratory information management systems (LIMS)—database applications that can help collect, organize, and track information about the samples being analyzed and the data being generated in the lab.

The first LIMS came on the scene more than 30 years ago as custom-made applications designed to increase productivity and to reduce the errors associated with routine laboratory functions. Today, a plethora of commercially licensed and open-source options are available, ranging from application-specific tools to multipurpose solutions. “A LIMS today is defined by what it can achieve,” says Tom Dolan, Director of Sales for RURO, Inc., which specializes in LIMS and other software for laboratory management.

Many LIMS can be configured to communicate with laboratory equipment, including analytical instruments and liquid-handling robots. This not only allows data to flow directly into the LIMS as it is generated, but also enables the system to direct the workflow with specifically tailored instructions. Features like these can improve efficiency by saving researchers the task of manually recording and entering data, and can reduce data transcription errors. Once the analysis is done, the LIMS can compile and generate custom data reports using information generated by multiple instruments and personnel. Many LIMS are also equipped with data-mining and trending tools that can provide unique insights into the data.

Since there is no “standard” LIMS, choosing a system can be difficult. In addition to evaluating LIMS based on the features that your lab requires, Dolan recommends that prospective buyers try to learn as much as possible about a prospective vendor. Of particular importance are the frequency and quality of services such as system updates, bug fixes, and new-feature rollouts, he says. LIMS shoppers should also look out for how much customization will be required, which influences the cost and time needed to get your LIMS up and running. Buyers should also consider the system’s capacity to adapt as the lab’s requirements change over the years.

The Scientist spoke with three researchers about how they are using LIMS to manage the particular type of data generated in their labs. This is what we learned.

Read more from The Scientist