ZetaClass is a comprehensive webinar series on dynamic and electrophoretic light scattering where our experts walk you through the basic measuring principles, data interpretation and tests performed to gauge data quality. Whether you are a new or advanced user of light scattering solutions, we will answer all your questions.
Nanoparticles provide crucial functionality across a wide range of materials, applications and sectors. Dynamic light scattering analysis, together with zeta potential information, allows us to confidently measure the size distribution profiles of particles in the sub-micron range as well as asses the behaviour of these nanoparticles in suspensions.
==========
DLS measures Brownian motion and relates this to the size of the particles. Brownian motion is the random movement of particles due to the bombardment by the solvent molecules that surround them. Normally DLS is concerned with measurement of particles suspended within a liquid. The velocity of the Brownian motion is defined by a property known as the translational diffusion coefficient (usually given the symbol, D).
The Hydrodynamic Diameter is a value that refers to how a particle diffuses within a fluid and this is the size of a particle that is calculated from the translational diffusion coefficient using the Stokes-Einstein’s equation. This in turn is dependent upon various factors such as Temperature, surface structure, ionic strength of the medium etc.
This week we shall discuss the Basic Measurement Principles used in Dynamic Light Scattering (sometimes referred to as Photon Correlation Spectroscopy or Quasi-Elastic Light Scattering) for measuring the size of particles typically in the sub-micron region.
The physical components and features of a dynamic light scattering (DLS) instrument along with the instrument’s technical specications are obviously important considerations when purchasing a new system. The purchase of a light scattering system, however, sometimes requires multiple researchers or several labs to work together to nd an instrument that suits the needs of everyone involved. It is in these cases where the answer to the “What type of samples will I be analyzing” question becomes complex because not only must you understand your own samples but you must then also understand the needs of others who will be sharing the instrument.
Every model of DLS instrument has its own strengths and weaknesses and there are usually trade-offs involved when considering a wide range of applications or sample types. The best model to choose would be the one which suits and is meant for satisfying that specific application area. This week we shall discuss the different models of the Zetasizer range offered by Malvern Panalytical and their advantages.
This session is led by Dr Anand Tadas, Malvern Panalytical's regional application specialist who has a wealth of knowledge in biologicals and DLS. Interested to improve your R and D / manufacturing process and gain more knowledge about the applications of particle size distribution using DLS? Scroll down to register your interest for our series of biopharma webinars.
Summary
- Measurement type:
- Particle size
Zeta potential - Date:
- October 07 2020 - October 07 2020
- Time:
- 14:00 - 15:00
Western Australia Time [Australia] - Event type:
- Webinar - Live
- Language:
- English
- Products:
- Zetasizer range
- Technology:
- Light Scattering
Multi-Angle Dynamic Light Scattering (MADLS) - Industry:
- University
Service labs/Integrators
Manufacturing, Research and Analytical Services
Metals
Pharmaceutical
Personal Care Products
Polymers
Chemicals/Coatings
Food and Beverages
Agrochemicals
Advanced Manufacturing
Nanomaterials
Oils, Fuels and Chemicals
Agenda
Who should attend ?
- Anyone interested in learning about Dynamic Light Scattering.
- R and D Scientists working in the fields of synthesis and formulation of nanomaterials, dispersions and applications of nano-materials in bio-pharma, vaccine research , pharmaceutical development etc.
Speakers
Dr Anand Tadas , Regional Technical Specialist at Malvern Panalytical
Dr Tadas heen associated with Malven Panalytical for more than 10 years. He specializes in the Nanometrics product ranges. Anand received his Ph.D. in Physical Chemistry (colloidal science) from Mumbai India. He is a holder of 3 patents on inert metal processing which are licensed. He has also guided 4 students for their Masters (M.Tech) programmes. At present, Dr Tadas is focusing on using the orthogonal characterization of materials particularly in the delivery applications across different sectors.
FAQ
Why should I attend ? What will I learn ?
1. How Dynamic Light Scattering technology works
2. What are its limitations
3. How the traditional limitations of DLS can be mitigated using MADLS and Adaptive correlation
4. Learn about the differences between the different DLS models to select the most suitable instrument for your application.
How long is this webinar?
60 minutes is the intended speaker time with additional time for addressing queries.
More information
Join our free series of nanoparticle analysis related webinars
- Webinar 1: Intro to Dynamic Light Scattering and its applications towards vaccine research, formulation and development. More info
- Webinar 2: Better particle size analysis and interpretation of dynamic light scattering data: recognising good vs bad data and practical tips on sample preparation and analysis. More info
- Webinar 3: Nanomedicine involving complex composition and the criteria for using nanoparticle tracking analysis.