ZetaClass is a comprehensive webinar series on dynamic and electrophoretic light scattering where our experts walk you through the basic measuring principles, data interpretation and tests performed to gauge data quality. Whether you are a new or advanced user of light scattering solutions, we will answer all your questions.

Nanoparticles provide crucial functionality across a wide range of materials, applications, and sectors. Dynamic light scattering analysis, together with zeta potential information, allows us to confidently measure the size distribution profiles of particles in the sub-micron range as well as assess the behavior of these nanoparticles in suspensions.

==========


Dynamic light scattering (DLS), also known as photon correlation spectroscopy (PCS) and quasi-elastic light scattering (QELS), is a technique used to measure the Brownian motion (diffusion) and subsequent size distribution of an ensemble collection of particles in solution.

For a collection of solution particles illuminated by a monochromatic light source, the scattering intensity measured by a detector will be dependent upon the relative positions of the particles within the scattering volume. For particles moving under the influence of Brownian motion, the measured scattering intensity will fluctuate with time. Correlation is a statistical method for measuring the degree of non-randomness in an apparently random data set.

When establishing the level of confidence in the size distribution results derived from a dynamic light scattering measurement, DLS users should always first consider the repeatability of the measurement, i.e. how repeatable is the result derived from sequential measurements of the same sample aliquot. Given good repeatability and reasonable results, one rarely needs to examine the quality of the raw data collected during the measurement.

The quality of data obtained from a dynamic light scattering (DLS) measurement is paramount to the reliability of the result obtained. However, in dynamic light scattering, there is no single parameter that can be used to gauge the quality or “goodness” of a measurement data set, but rather a collection of measurement parameters that need to be examined prior to attaching a large degree of confidence to a DLS derived size distribution.

The instruments measuring DLS are operated by analysis software common to the systems. The main function of the analysis is to transform the measured raw data (autocorrelation function) into a size result. To simplify the interpretation of the data from a dynamic light scattering measurement, a series of tests are performed on the data and results of the selected measurement record. A good instrumentation approach would be to check if any of the tests fall outside specified limits. If they do then a warning message is to be displayed, together with the advice of possible reasons for the warning and possible actions that could be taken to address the issue. If none of the tests fail, a “Result Meets Quality Criteria” message can be displayed in the Size Quality Report.

Today’s webinar will discuss the criteria/tests that are performed on the measured data and based on which the data quality is interpreted to be ‘good’ or ‘needs improvement’.

This session is led by Dr Anand Tadas, Malvern Panalytical's regional application specialist who has a wealth of knowledge in biologicals and DLS.

Interested in improving your R&D / manufacturing process and gain more knowledge about the applications of particle size distribution using DLS? Scroll down to register your interest in our series of webinars.

Summary

Measurement type:
Zeta potential
Particle size
Date:
October 13 2020 - October 13 2020
Time:
14:00 - 15:00
Western Australia Time [Australia]
Event type:
Webinar - Live
Language:
English
Products:
Zetasizer range
Technology:
Nanoparticle Tracking Analysis
Dynamic Light Scattering

Agenda

Who should attend?
- Anyone interested in learning about Dynamic Light Scattering.
- R&D Scientists working in the fields of synthesis and formulation of nanomaterials, dispersions and applications of nano-materials in biopharma, vaccine research, pharmaceutical development, etc.

Speakers

Dr Anand Tadas, Regional Technical Specialist at Malvern Panalytical

Dr Tadas has been associated with Malvern Panalytical for more than 10 years. He specializes in the Nanometrics product ranges. Anand received his Ph.D. in Physical Chemistry (colloidal science) from Mumbai India. He is a holder of 3 patents on inert metal processing which are licensed. He has also guided 4 students for their Masters (M.Tech) programs. At present, Dr Tadas is focusing on using the orthogonal characterization of materials particularly in the delivery applications across different sectors.

FAQ

Why should I attend ? What will I learn ?
1. How Dynamic Light Scattering technology works
2. What are its limitations
3. How the traditional limitations of DLS can be mitigated using MADLS and Adaptive correlation
4. Learn about the differences between the different DLS models to select the most suitable instrument for your application.


How long is this webinar?
60 minutes is the intended speaker time with additional time for addressing queries.

More information

Join our free series of webinars
- Webinar 1: Intro to Dynamic Light Scattering and its applications towards vaccine research, formulation and development
- Webinar 2: Recognising good vs bad DLS data: practical tips on sample preparation and handling, software navigation and analysis. More info
- Webinar 3: Nanomedicine involving complex composition and the criteria for using nanoparticle tracking analysis. More info
- Webinar 4: Research applications on gene therapy and virus research using NTA. More info
- Webinar 5: Focus on Vaccine Development 1: Value of DSC as a Complimentary and Insightful Technique for Structural Characterization of a Multi-Domain Protein Antigen. More info
- Webinar 6: Focus on Vaccine Development 2: How Stable is Stable? Combining biophysical techniques and advanced kinetics to support formulation development. More info
- Webinar 7: Strengthening the analytical workflow for rAAV viral vector development. More info