Netzsch - LFA 427

Manufactured by  Netzsch
Follow this Equipment

Laser Flash technique over the broadest temperature range

Thermal conductivity and thermal diffusivity are the most important thermophysical material parameters for characterizing the thermal transport properties of a material or component. The Laser Flash technique is currently the most widely accepted method for precise measurement of the thermal diffusivity and the LFA 427 is the number one instrument on the world market.

High precision and reproducibility, short measurement times, variable sample holders and defined atmospheres are outstanding features of LFA measurements over the entire application range from -70°C to 2800°C.

The thermal conductivity of disk-shaped samples of ceramic, glass, metals, melts and liquids, powders, fibers and multi-layer materials ranging from vacuum insulation panels to diamonds is measured with equal speed and accuracy. The temperature-dependent measured thermal diffusivity value along with the corresponding specific heat (DSC 404 F1 Pegasus®) and density (DIL 402 C) data are used to calculate the thermal conductivity.

The laser power, pulse width, gas and vacuum are variable over a wide range, making it possible to set the optimum measurement conditions for the very different sample properties.

The LFA 427 is the most powerful and versatile LFA system for research and development as well as all applications involving characterization of standard and high-performance materials in automobile manufacturing, aeronautics, astronautics and energy technology.
Active Questions & AnswersAsk a Question

Recent Questions & Answers

avatar placemark

Updated byDodolino79

Elemental Analyzers Service ProvidersView All (6)

Request Support
Features of LFA 427
  • Accurate pulse length correction, pulse mapping
  • Heat-loss corrections, all literature models are integrated
  • Non-linear regression for Cowan fit
  • Improved Cape-Lehmann model through consideration of multi-dimensional heat loss and non-linear regression
  • Radiation correction for semi-transparent samples
  • 2- or 3-layers systems: analysis by means of non-linear regression and consideration of heat loss
  • Determination of contact resistance in multi-layer systems
  • Model wizard for selecting the optimum evaluation model
  • Determination of specific heat by means of a comparative method and standard samples
  • Integrated databank
General Specifications

There are no General Specifications available.

Looking for New or Used Equipment?

Shop on LabX

Shop on Labx.com